Penentuan Kuartil

Menurut pengertian katanya, Kuartil (Quartile) dapat diartikan sebagai berikut :

In descriptive statistics, a quartile is any of the three values which divide the sorted data set into four equal parts, so that each part represents one fourth of the sampled population (Dalam statistika Deskriptif, suatu kuartil adalah sebarang dari tiga nilai yang membagi suatu data yang telah terurut menjadi empat kelompok, sehingga masing-masing kelompok mewakili seperempat populasi dalam sampel tersebut) – sumber :

Kita bedakan cara pencarian Kuartil dalam tiga cara menurut penyajian datanya sebagai berikut :

  • Jika data disajikan dalam bentuk Data Tunggal Tak Berfrekuensi

Contoh 1 : Tentukan dari  4, 7, 5, 6, 7, 8, 5, 9, 10

Jawab : Kita urutkan dahulu datanya menjadi :

4, 5, 5, 6, 7, 7, 8, 9, 10 lalu kita kelompokkan menjadi dua bagian

seperti berikut  , kita lihat

yang di tengah-tengah adalah 7, maka itulah Kuartil keduanya, atau

Kemudian kelompok kiri dan kanan kita lihat berikut menentukan kuartil 1 dan kuartil 3 :

Contoh 2 : Tentukan dari  3, 4, 4, 6, 5, 6, 7, 8, 5, 8, 9, 10

Jawab : Kita urutkan dahulu datanya menjadi :

3, 4, 4, 5, 5, 6, 6, 7, 8, 8, 9, 10 lalu kita kelompokkan menjadi empat bagian sebagai berikut :

  • Jika data disajikan dalam bentuk Data Tunggal Berfrekuensi

Contoh 1 : Tentukan dari tabel berikut :

Tabel 1

Nilai f
4 1
5 2
6 4
7 3
8 2

Jawab : Tentukan terlebih dahulu frekuensi kumulatif sebagai berikut

Tabel 2

Nilai f ∑f
4 1 1
5 2 1+2=3
6 4 3+4=7
7 3 7+3=10
8 2 10+2=12

Jadi jumlah frekuensi (atau jumlah data) ada n=12,

ditentukan dahulu karena menentukan yang tengah-tengah paling mudah, dan tengah-tengah dari 12 data terletak antara data ke-6 dan ke-7 seperti nampak pada visualisasi berikut :

Dengan melihat tabel 2, kita tahu bahwa data ke-6 adalah 6 dan data ke-7 juga 6, sehingga

.

Secara umum, mencari nilai Q1, Q2, dan Q3 adalah dengan cara memandang jumlah data secara kontinu atau dipandang seperti sebuah garis lurus, misalnya sebagai berikut untuk contoh diatas :

 

  • Jika data disajikan dalam bentuk Data Berkelompok 

Data berkelompok adalah penyajian data dalam tampilan interval-interval (kelas).

Contoh :

Interval f ∑f
5 – 8 2 2
9 – 12 4 6
13 – 16 5 11
17 – 20 3 14

Dari tabel di atas, kita peroleh :

Banyak interval ada 4, yaitu 5 – 8, 9 – 12, 13 – 16, 17 – 20 ;

Panjang masing-masing kelas (interval), c = (8 – 5) + 1 = 4 ;

Banyak data, n=∑f=14 ;

Tepi bawah masing-masing interval didefinisikan dengan batas bawah dikurangi 0,5, dan tepi atas didefinisikan dengan batas atas ditambah 0,5. Tepi bawah masing-masing interval adalah : 4,5 ; 8,5 ; 12,5 ; 16,5 . Tepi atas masing-masing interval adalah : 8,5 ; 12,5 ; 16,5 ; 20,5.

Karena median (Q2) terletak di tengah-tengah, maka merupakan data ke-n/2=data ke-14/2=7. Dengan melihat tabel, data ke-7 terletak pada interval ketiga, yang tepi bawahnya, B=12,5.

Kuartil kedua (Q2) dinyatakan dengan formulasi :

Dengan adalah frekuensi kumulatif sebelum kelas yang memuat Q2 (dalam contoh ini kelas median adalah kelas ketiga), jadi = 6 ;

dan f adalah frekuensi kelas median, yaitu f = 5.

Sehingga dapat kita hitung :

.

About these ads

23 Komentar (+add yours?)

  1. Malaikat Pengembara
    Sep 19, 2012 @ 19:08:36

    kalau kuartil data berkelompok gimana?

    Balas

  2. deburhan
    Okt 12, 2012 @ 08:12:43

    untuk data tunggal, yakin ga tuh caranya?

    Balas

    • Raharja
      Okt 12, 2012 @ 08:40:51

      Kita kembali ke definisi dari kuartil di atas. Memang ada yang terus membuat perumusan.

      Balas

      • deburhan
        Okt 12, 2012 @ 14:44:46

        utuk menentukan kuartil ke-2 data tunggal mungkin benar seperti contoh, tapi untuk kuartil 1 atau kuartil 3 bisa berbeda kalau kita menggunakan cara biasa dan cara interpolasi. silahkan dibuat contoh data tunggal misalnya 20 buah datum. di buku kadang ada yng menggunakan cara biasa ada juga yang menggunakan interpolasi. jadi mana yg benar ya?
        Thanks atas responnya.

      • Raharja
        Okt 17, 2012 @ 02:30:59

        Memang ada bebearapa macam metode interpolasi dalam menentukan kuartil, dan masing-masing bisa mwmberikan hasil agak berbeda :
        Bisa dilihat di http://mathworld.wolfram.com/Quartile.html.

  3. randa
    Okt 16, 2012 @ 18:08:28

    data genap caranya gimana

    Balas

  4. deburhan
    Okt 17, 2012 @ 08:36:13

    data genap ada penjelasannya di atas.

    Balas

  5. Nu'aim
    Okt 31, 2012 @ 06:17:37

    Bgmn lw penentuan kuartil tengah

    Balas

  6. Jimmy
    Des 01, 2012 @ 22:04:37

    lanjutin dong Q1 dan Q3 untuk data berkelompok

    Balas

  7. kocak123
    Des 10, 2012 @ 11:07:33

    thanks

    Balas

  8. unikgaul.com
    Des 20, 2012 @ 23:03:36

    mantap bos terima kasih banyak soalnya :D

    Balas

  9. dave
    Feb 17, 2013 @ 16:38:45

    makasih pak infonya

    Balas

  10. Sakuning
    Mar 18, 2013 @ 08:45:19

    Thanks infonya bro..~
    Salam kenal :)

    Balas

  11. taufik
    Sep 02, 2013 @ 18:37:32

    mau nanya kalau yang di maksud kuartil atas itu yang bagaimana ??

    Balas

  12. taufik
    Sep 08, 2013 @ 21:43:36

    ohhh makasih pa

    Balas

  13. rudi
    Okt 21, 2013 @ 08:58:05

    Contoh yg pk interpolasi ada?

    Balas

  14. piyon
    Nov 01, 2013 @ 20:29:30

    kalau kwartil atas bawah gimana? tolong jelaskan

    Balas

Berikan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Logout / Ubah )

Twitter picture

You are commenting using your Twitter account. Logout / Ubah )

Facebook photo

You are commenting using your Facebook account. Logout / Ubah )

Google+ photo

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s

Ikuti

Get every new post delivered to your Inbox.

Bergabunglah dengan 38 pengikut lainnya.

%d blogger menyukai ini: