Latihan logaritma

Berikut soal-soal logaritma untuk latihan yang pertama :

Tentukan nilai-nilai dari

Iklan

Integral Substitusi (Contoh)

Nomor 1

 

 

 

 

 

Soal-soal dan Pembahasan Matematika UN

Nomor 1
Perhatikan premis-premis berikut !
1. Jika saya giat belajar maka saya bisa meraih juara.
2. Jika saya bisa meraih juara maka saya boleh ikut bertanding.

Ingkaran dari kesimpulan kedua premis di atas adalah ….

A. Saya giat belajar dan saya tidak boleh ikut bertanding.
B. Saya giat belajar atau saya tidak boleh ikut bertanding.
C. Saya giat belajar maka saya bisa meraih juara.
D. Saya giat belajar dan saya boleh ikut bertanding.
E. Saya ikut bertanding maka saya giat belajar.

Penyelesaian :(jawab :A)

Nomor 2

Bentuk sederhana dari     adalah …

Penyelesaian :

(jawab : A)

Nomor 3

Bentuk sederhana dari   

Penyelesaian :

(jawab : B)

Nomor 4

Nilai dari

Penyelesaian :

(jawab : B)

Nomor 5 

Grafik fungsi kuadrat  menyinggung garis . Nilai b yang memenuhi adalah ….
A. -4
B. -3
C. 0
D. 3
E. 4

Penyelesaian :

Gradien garis adalah m = 3. Sedangkan gradien garis singgung kurva adalah nilai turunan f'(x) di titik singgung.

Karena , maka dengan x adalah nilai absis di titik singgung. Nilai x dapat dicari dengan mencari penyelesaian

Ada dua kemungkinan x=0 atau x=3-b .

Jika x=0, maka

Jika x=3-b, maka

(jawab: D)

Nomor 6

Akar-akar persamaan kuadrat      adalah α dan β . Jika  α= 2β dan a > 0 maka nilai a =…

A. 2
B. 3
C. 4
D. 6
E. 8

Penyelesaian :

Karena α dan β  akar-akar dari   maka

Diketahui α= 2β , sehingga

Sehingga β=-1 atau β=1.

Untuk β=-1, maka

Untuk β=1, maka

Karena a>0, maka dipilih a=4. (jawab : C)

Nomor 7

Jika p dan q adalah akar-akar persamaan , maka persamaan kuadrat baru yang akar-akarnya 2p+1 dan 2q+1 adalah…

Penyelesaian:

Dari akar-akar x=2p+1, kita dapatkan

Pada persamaan , kita substitusikan (sulihkan) x dengan p :

(jawab : D)

Nomor 8 :

Salah satu persamaan garis singgung lingkaran      yang sejajar dengan garis     adalah ….

Penyelesaian :

Yang sejajar dengan garis    berarti gradiennya sama dengan garis . Sedangkan gradien garis   adalah :

gradien m = 7.

Jadi persamaan garis singgung yang dimaksud mempunyai gradien m=7 karena sejajar.

Persamaan garis singgung lingkaran yang gradiennya m adalah :

, sehingga jika persamaan lingkarannya   dan m=7 maka persamaan garis singgungnya adalah :

(jawab: E)

Nomor 9

Diketahui fungsi      dan    . Nilai komposisi fungsi 

A. 2              B. 3       C. 4        D. 7         E. 8

Penyelesaian :

Pertama :

Kemudian :

  (jawab : D)

Nomor 10

Diketahui . Jika adalah invers dari , maka nilai

Penyelesaian :

Jika      maka    .

Misal      , maka
Jadi untuk mencari     dapat melalui :

(jawab: C)

Nomor 11

Suku banyak dibagi sisanya 6, dan dibagi sisanya 24. Nilai

Penyelesaian :

  bersisa 6,  maka

bersisa 24, maka

Dari (i) dan (ii) diperoleh :

(jawab:E)

Nomor 12

Toko A, toko B, dan toko Cmenjual sepeda. Ketiga toko tersebut selalu belanja di sebuah distributor yang sama. Toko A harus membayar Rp5.500.000,00 untuk pembelian 5 sepeda jenis I dan 4 sepeda jenis II. Toko B harus membayar Rp3.000.000,00 untuk pembelian 3 sepeda jenis I dan 2 sepeda jenis II. Jika toko C membeli 6 sepeda jenis I dan 2 sepeda jenis II, maka toko C harus membayar sebesar….

A. Rp3.500.000,00                                     D.Rp5.000.000

B. Rp4.000.000,00                                     E. Rp5.500.000

C. Rp4.500.000,00

Penyelesaian :

Misal : x=harga 1 sepeda jenis I

              y=harga 1 sepeda jenis II

Maka :

 

(jawab: C)

Nomor 13
Luas daerah parkir 1.760 m2 . Luas rata-rata untuk mobil kecil 4 m2 dan mobil besar 20 m2 . Daya tampung maksimum hanya 200 kendaraaan, biaya parkir mobil kecil Rp1.000,00/jam dan mobil besar Rp2.000,00/jam. Jika dalam satu jam terisi penuh dan tidak  ada kendaraan yang pergi dan datang, penghasilan maksimum tempat parkir adalah ….
A. Rp 176.000,00
B. Rp 200.000,00
C. Rp 260.000,00
D. Rp 300.000,00
E. Rp 340.000,00

Penyelesaian :

Mobil Kecil

Mobil Besar

Daya Tampung

Banyak (buah)

x

Y

200

Luas Parkir (m2)

4

20

1760

Keuntungan (rupiah)

1000

2000

Maka dapat kita bentuk sistem pertidaksamaan :

 

Dan karena x dan y tidak mungkin negatif (banyak kendaraan), maka :

Lalu fungsi yang akan dioptimalkan adalah .

Pertama digambar daerah yang ditunjukkan sistem pertidaksamaan :

Gambar garis    :

Gambar garis  :

Titik potong kedua garis dapat dicari sbb:

Sehingga gambarnya :

pl1

Pengujian titik-titik pojok :

Titik Pojok

F(x,y)=1.000x + 2.000y

A(200,0) 1.000(200)+0 =200.000
B(140,60) 1.000(140)+2.000(60) =260.000
C(0,88) 0+2.000(88) =176.000

Jadi yang maksimumnya Rp260.000,00.  (jawab : C)

Nomor 14

Diketahui matrik-matrik :

.

Jika 2A-B=CD, maka nilai a+b+c=….

A. -6
B. -2
C. 0
D. 1
E. 8

Penyelesaian :

(jawab : B)

Nomor 15

Diketahui koordinat A(0,0,0), B(–1,1,0), C(1, –2,2). Jika sudut antara   dan  adalah  α maka cos α = ….

Penyelesaian :

Vektor    dan dapat dinyatakan sebagai berikut :

Sehingga :

(jawab : E)

Nomor 16

Diketahui titik A(3,2, –1), B(2,1,0), dan C(–1,2,3). Jika   maka proyeksi vektor pada adalah ….

 Penyelesaian :

Proyeksi vektor pada =

(jawab: B)

Nomor 17

Persmaan bayangan garis y = 2x – 3 yang direfleksikan terhadap garis y = –x dan dilanjutkan garis y = x adalah ….
A.  2y + x + 3 = 0
B. y + 2x – 3 = 0
C. y – 2x – 3 = 0
D. 2y + x – 3 = 0
E. 2y – x – 3 = 0

Penyelesaian :

Kita substitusikan pada persamaan y=2x-3 :

(jawab: C)

Nomor 18

Perhatikan grafik fungsi eksponen berikut !

Persamaan grafik fungsi invers pada gambar adalah ….

EKSP

Penyelesaian :

(jawab: C)

Nomor 19

Diketahui barisan aritmetika dengan Un adalah suku ke–n. Jika U2 + U15 + U40 = 165, maka U19 = ….
A. 10
B. 19
C. 28,5
D. 55
E. 82,5

Penyelesaian :

Karena barisan aritmatika, maka

dengan a suku pertama dan b adalah beda.

(jawab: D)

Nomor 20

Tiga buah bilangan membentuk barisan aritmetika dengan beda tiga. Jika suku kedua dikurangi 1, maka terbentuklah barisan geometri dengan jumlah 14. Rasio barisan tersebut adalah ….

Penyelesaian :

Misal ketiga suku tersebut adalah a, a+b, a+2b maka dari pernyataan “Jika suku kedua dikurangi 1, maka terbentuklah barisan geometri dengan jumlah 14”, dapat ditulis :

a, a+b-1, a+2b membentuk barisan geometri dengan

Karena barisan geometri, maka :

Sehingga :

(jawab: B)

Nomor 21

Diketahui kubus ABCD.EFGH dengan panjang rusuk 6 cm dan T adalah titik tengah CG. Jarak titik E ke BT adalah ….

Penyelesaian :

Bisa digambar sebagai berikut :

dim31

Dan

Untuk mencari jarak E ke BT yang tidak lain adalah panjang garis yang ditarik dari E tegak lurus ke BT pertama dicari luas segitiga EBT. Luas segitiga EBT dapat dicari dengan rumus :

Nilai sinus sudut BET dapat dicari melalui hukum cosinus sebagai berikut:

Sehingga luas segitiga EBT adalah :

Luas segitiga EBT juga ditunjukkan dengan rumus :

Jadi jarak E ke BT adalah cm. (jawab : C )

Nomor 22

Diketahu kubus ABCD.EFGH. Nilai kosinus sudut antara CF dan bidang ACH adalah ….

Penyelesaian :

Misalkan sudut antara CF dan bidang ACH adalah α, maka gambarnya adalah :

dim32

Nilai cosinus sudut α dapat dicari dengan hukum cosinus. Lebih dulu misalkan panjang rusuk kubus 1, maka :

Dari hukum cosinus, maka :

(jawab: B )

Nomor 23
Luas segitiga beraturan dengan panjang jari – jari lingkaran luar 8 cm adalah ….
A. 192 cm2
B. 172 cm2
C. 162 cm2
D. 148 cm2
E. 144 cm2

Penyelesaian :

Segitiga beraturan berarti segitiga sama sisi, dapat digambar sebagai berikut :

lingkaran1

Segitiga dalam lingkaran tersebut dapat dipecah menjadi 3 segitiga sama kaki dengan sisi 8 cm, 8 cm, dan S cm. Sudut α yang tidak lain sudut segi-3 beraturan besarnya 360o /3 =120o.

Luas segitiga dihitung sebagai sebagai 3 kali luas segitiga sama kaki sebagai berikut :

(jawab : — )

Nomor 24

Diberikan prisma tegak segitiga ABC.DEF dengan panjang rusuk AB = 6 cm, BC =  cm, dan AC = 3 cm. Tinggi prisma adalah 20 cm. Volume prisma adalah ….

prism

Penyelesaian :

Alas prisma merupakan segitiga siku-siku karena memenuhi rumus phytagoras sebagai berikut :

Siku-siku di titik C. Sehingga luas alasnya :

Volume prisma :

(jawab: D)

Nomor 25

Himpunan penyelesaian persamaan adalah ….

Penyelesaian :

Yang memenuhi adalah . (jawab : E)

Nomor 26

Hasil dari  

Penyelesian :

(jawab: D)

Nomor 27

Diketahui       dan    .   Nilai dari

Penyelesaian :

Sehingga :

(jawab : E)

Nomor 28

Nilai  

Penyelesaian :

(jawab : D)

Nomor 29

Koordinat titik potong garis singgung yang melalui titik pada kurva dengan sumbu Y adalah ….

Penyelesaian :

Gradien garis singgung dapat dicari sebagai berikut :

Persamaan garis singgung dicari sebagai berikut :

memotong sumbu Y untuk x=0, jadi

(jawab : D)

Nomor 30

Suatu perusahaan menghasilkan x produk dengan biaya total sebesar rupiah. Jika semua hasil produk perusahaan tersebut habis dijual dengan harga Rp. 5.000,00 untuk satu produknya, maka laba maksimum yang dapat diperoleh perusahaan tersebut adalah ….

A. Rp. 149.000,00

B. Rp. 249.000,00

C. Rp. 391.000,00

D. Rp. 609.000,00

E. Rp. 757.000,00

Penyelesaian :

Soal Matematika SMA dan Penyelesaian

Nomor 1

Jika  , maka .

Penyelesaian :

Langkah pertama :

Langkah kedua :

selesai

Nomor 2:

Diketahui      dan     , maka .

Penyelesaian :

Kemudian :

selesai

Nomor 3 :

Supaya     terdefinisi maka haruslah ….

A. x < 2 atau x > 3

B. 0 < x < 2 atau x > 3

C. 0 < x < 1 atau x > 3

D. 0 < x < 1 atau 1 < x < 2

E. 0 < x < 1 atau 1 < x < 2 atau x > 3

Penyelesaian :

Ingat bahwa    terdefinisi jika p, q > 0. Sehingga

Jawab (C)

Matrik

Matrik adalah susunan bilangan, simbol, atau ekspresi dalam bentuk segiempat. Masing-masing individu dalam matrik disebut dengan elemen atau entri.

Matrik dilambangkan dengan huruf kapital. Ukuran matrik ditulis dengan m x n , dimana m adalah jumlah baris dan n jumlah kolom. Contoh matrik berukuran 2 x 3 adalah :

Misal matrik tersebut dinamakan matrik A dengan elemen-elemen , maka

Operasi pada Matrik

1. Penjumlahan dan Pengurangan

Penjumlahan dan pengurangan pada matrik dilakukan pada elemen yang posisinya sama, jadi penjumlahan dan pengurangan pada matrik hanya mungkin untuk matrik yang berukuran sama. Misal matrik berukuran 2 x 2 juga hanya bisa dijumlah atau dikurang dengan matrik 2 x 2, tidak bisa dengan misalnya matrik 2 x 3.

Contohnya :

1.

2.

2. Perkalian

Perkalian matrik didefinisikan sebagai berikut :

Untuk baris pertama kali kolom pertama, yaitu :

Nilai dari hasil perkalian tersebut ditempatkan pada posisi baris pertama kolom pertama pada matrik hasil perkalian.

Contoh :

1.

 

Soal integral tertentu XII ipa

11. a.

11.b.

11.c.

13.a. Diketahui   dan   dimana f(x) ialah fungsi dalam x . Hitung nilai dari .

Jawab :   maka  :

Sehingga

 

Soal Ibu Masyitah

(1)      

(2)    

Previous Older Entries